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The thermodynamic stability of the (/t-oxo)diferric unit has 
led to the synthesis and characterization of a large number of 
complexes.1 The complexes exhibit Fe-O-Fe angles that range 
from 180° to 113.8°, usually determined by the bites of additional 
bridging ligands. In many instances, the (jt-oxo)diferric unit 
forms as a result of autoxidation reactions of high-spin ferrous 
complexes. Indeed nature may have taken advantage of the 
stability of this structural motif for use in the active sites of diiron 
proteins10 such as hemerythrin,2 rubrerythrin,3 ribonucleotide 
reductase,4 and fatty acid desaturase.5 In the course of our efforts 
to model such protein active sites, we have found the first complex 
with a (n-oxo)(M-hydroxo)diferric core by suitable manipulation 
of the terminal ligands. Furthermore this complex has mild 
oxidative properties. 

The reaction of 1 equiv of FeX2 (X = ClO4 or CF3SO3) and 
6TLA6 with 5 equiv of 1BuOOH in methanol/H20 at -40 0C 
affords a red powder, 1. It is EPR silent at 2 K and exhibits 
UV-vis bands at 396 nm (« = 4150 M"1 cm"1) and 550 nm (e = 
670 M-1 cm-1), features distinct from those of the transient [Fe-
(6TLA)OOR]2+ species reported earlier.7 The MSssbauer 
spectrum of 1 at 4.2 K consists of a single quadrupole doublet 
withn AEQ = 1.66 mm/s and S = 0.51 mm/s; the spectrum 
recorded in the presence of a 6.0-T applied field shows that the 
ground state is diamagnetic. Taken together, the data indicate 
an antiferromagnetically coupled (jt-oxo)diferric unit.1 

X-ray crystallography shows 1 (ClO4) to be best formulated 
as [Fe20(OH)(6TLA)2](C104)3,
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Figure 1. ORTEP drawing of the cation of 1 with atom-labeling scheme. 
Selected bond lengths (A) and bond angles (deg) are as follows. Molecule 
A: FeIA-OlA, 1.906(8); FeIA-OlA', 1.981(8); FeIA-NlA, 2.174-
(9);FelATNllA,2.239(9);FelA-N21A,2.194(9);FelA-N31A, 2.188-
(9); FeIA-FeIA', 2.95(1); 01A-01A' , 2.53(1); FeIA-OIA-FeIA', 
98.7(4); N21A-FelA-01A, 168.2(3); N21A-FelA-01A', 108.2(3). 
Molecule B: FeIB-OlB, 1.960(9); FeIB-OlB', 1.91(1); FeIB-NlB, 
2.18(8); FeIB-Nl IB, 2.28(1); FelB-N21B, 2.196(9); FelB-N31B, 2.18-
(D;FelB-FelB',2.94(l);01B-01B',2.52(l);FelB-01B-FelB',98.7-
(6); N21B-FelB-01B, 168.9(4); N2IB-FeIB-OIB', 109.4(4). No 
evidence for hydrogen bonding to the bridging oxygens can be found in 
the unit cell. 

an oxo and a hydroxo bridge (Figure I).9 There are two unique 
molecules in the unit cell, each with an inversion center at the 
center of the Fe2O2 core. Each iron atom is in a distorted 
octahedral environment consisting of the four nitrogens from 
6TLA and two bridging oxygen atoms. The average Fe-Npy 
bond length is 2.21 A, which is 0.06 A longer than those found 
in Ot-oxo)diferric TPA complexes.10 The longer Fe-Npx bonds 
probably arise from the presence of the 6-methyl groups on the 
pyridine rings, whose steric interactions prevent the pyridine 
nitrogens from coordinating to the iron(III) center at the optimum 
bond length.7 As partial compensation, the Fe-Namine distance 
is 0.05 A shorter than those in TPA complexes,10 resulting in 
Fe-N bonds of comparable length for 1. 

The Fe-M-O bonds have lengths of 1.906(8)-1.981(8) A, 
averaging 1.94 A for the two molecules of the unit cell. Such 
bond lengths border on the short end of the range found for bis-
(M-hydroxo)diiron(III) complexes (1.96-2.06 A).11 However, 
the presence of three ClO4 ions associated with each dinuclear 
unit, the Mossbauer evidence for a (M-OXO) diferric center, and 
electrospray ionization mass spectral data8b require that one of 
the bridging oxygen atoms is an oxide and the other a hydroxide. 
The observed Fe-M-O bond lengths must then result from a 
disorder imposed by the inversion symmetry in the unit cell, with 
the average Fe-O bond distance observed being a compromise 
between Fe-M-O and Fe-M-OH distances. In corroboration, we 
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Figure 2. Fourier transformed EXAFS data (fc = 2-14 A"1) of 1. The 
experimental data (Fourier filtered from r'= 1.0-3.0 A) were fitted by 
using one N/O at 1.82 A (<r2 - -0.000 24), 1 N/O at 1.99 A (a2 = 
0.0012), four N/O at 2.20 A (<r2 = 0.0084), and one Fe at 2.91 A (CT2 

= 0.0036) (residual, 13%). Omission of any one of these shells from the 
fit more than doubled the residual. 

note that the Fe-Fe distance for 1 is 2.94(1) A, which is 0.1-0.2 
A shorter than those observed for Fe2Ox-OH)J1' and Fe2(It-OR)2

12 

complexes. 
To obtain further support for the proposed structure, we have 

analyzed EXAFS data for I.13 Since this technique provides a 
radial distribution of scatterers about the metal center,14 the 
metal-ligand distances obtained would be unaffected by the 
disorder imposed by the unit cell. Figure 2 shows the Fourier 
transformed EXAFS spectrum of 1; the features at r' < 2.2 A 
correspond to the first coordination sphere, and that at r' = 2.5 
A corresponds to the Fe-Fe component. The best fit of this 
spectrum gives one N/O at 1.82 A, one N/O at 1.99 A, four N/O 
at 2.20 A, and one Fe at 2.91 A. There is good agreement between 
the EXAFS and crystallographic results for the average Fe-N 
distance and the Fe-Fe separation. The 1.82-A scatterer would 
then correspond to the |t-oxo bridge, and the 1.99-A scatterer to 
the M-hydroxo bridge (Figure 2 inset). While the length of the 
Fe-^-OH bond falls within the expected range for such bridges,11 

the Fe-ii-0 bond is on the long end relative to most other Fe-/*-0 
bonds.' The longer bond may result from the steric strains imposed 
by the Fe2G*-0)(ii-OH) core, as the Fe-O-Fe angle is the smallest 
of any (ft-oxo)diferric unit in the literature.1 This structure is 
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also maintained in solution as indicated by its NMR spectrum 
(supplementary material); seven pyridine /3 protons are found in 
the 15-30 ppm region, consistent with the presence of the ju-oxo 
bridge and inequivalent 6TLA ligands. 

When 1 is incubated with 1 -methyl-1,4-cyclohexadiene or PPI13 
in CH3CN under Ar, a slow loss of its characteristic visible 
spectrum is observed. The reaction is complete in 2-3 h at 80 
0C, and its NMR reveals sharp paramagnetically shifted signals 
typical of high-spin [Feu6TLA] complexes.15 Thus 1 appears to 
be reduced to an Fe(II) species, and 1 -methyl-1,4-cyclohexadiene 
and PPh3 are oxidized to toluene and OPPh3, respectively. From 
GC measurements, the yields of the oxidation products are found 
to be (1.1 ± 0.1)/2Fe. 

While there are a large number of diferric complexes with 
Fe2(OR)2 (R = H, alkyl, or aryl) cores, 1 represents the first 
example of a diferric complex with an oxo and a hydroxo bridge.16 

We believe this to be a result of the 6TLA ligand, whose methyl 
groups sterically prevent the ferric center from making strong 
Fe-N bonds. This situation engenders an Fe(III) ion with strong 
Lewis acidity, and, in the absence of other potential ligands, only 
the deprotonated forms of water can mitigate the high effective 
charge on the Fe(III). The same considerations also provide the 
driving force for the reduction of 1, as the longer Fe-N bond 
lengths required by the steric interactions would be more easily 
accommodated by the larger ionic radius of Fe(II).7 Similarly, 
the coordination of pyridine to the FePc unit serves to drive the 
reduction of [FePc]2O concomitant with the oxidation of Ph3P.17 

These examples demonstrate that the manipulation of the 
coordination environment to stabilize Fe(II) can activate the 
usually "inert" (t«-oxo)diiron(III) unit to carry out oxidation 
chemistry. 
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